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Abstract: The derivation of linear acceleration, angular acceleration, and angular velocity 

states from a 12-axis gyroscope-free inertial measurement unit that utilizes four 3-axis 

accelerometer measurements at four distinct locations is reported. Particularly, a new 

algorithm which derives the angular velocity from its quadratic form and derivative form 

based on the context-based interacting multiple model is demonstrated. The performance of 

the system was evaluated under arbitrary 3-dimensional motion. 

Keywords: inertial measurement unit; accelerometer; gyroscope-free; angular velocity; 

interacting multiple model; context-based 

 

1. Introduction 

Inertial sensors have been widely used in various applications, including motion detection [1], body 

state estimation [2-4], navigation [5-7], microsurgery [8], rehabilitation [9], etc. Traditionally a 

standard inertial measurement unit (IMU) comprised of 3-axis linear acceleration measurement by 

accelerometers installed at center of mass (COM) and 3-axis angular velocity measurement by rate 

gyros readily provides complete six degree-of-freedom (DOF) motion-related measurements spanning 

the 3-dimensional space. For highly dynamic systems which favorably have angular acceleration 

measurements, to the best of our knowledge there is no off-the-shelf product available. One widely 

adopted approach to derive this state is by differentiation of rate gyro signals, together with the filter 

technique. The other approach is based on the principle of Newtonian Mechanics, which relates linear 
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acceleration, angular acceleration, and angular velocity in a memoryless manner. Because of this 

characteristic, derivation of the angular acceleration by only the inertial sensors seems to be a feasible 

method [10]. 

The gyroscope-free inertial measurement unit (GF-IMU) [11-13] is one of the more popular IMU 

methods to achieve this goal. Compared to the traditional IMU, the GF-IMU utilizing only 

accelerometers includes several features such as low-cost, easy calibration, being less affected by 

temperature variations, and a simple mechatronic setup. In general, the GF-IMU is capable of deriving 

linear acceleration, angular acceleration, and angular velocity. Because the latter two states have 

integrative/derivative relation, a GF-IMU comprised of 6-axis measurements is theoretically capable of 

yielding all three states (i.e., 9 scalar unknowns). One of the typical configurations of sensors is to 

have a 3-axis acceleration measurement at the COM and three 1-axis measurements on the principal 

axes. However, the iterative computation between the derived angular acceleration and the integrated 

angular velocity can possibly deteriorate the fidelity of these two states. Padgaonkar et al. proposed  

a 9-axis acceleration measurement system capable of deriving bounded linear and angular  

acceleration [14]. Chen et al. proposed a novel 6-axis system which yielded a bounded angular 

acceleration [15]. The system was carefully evaluated [16] and improved by adding a 3-axis 

acceleration measurement [17]. In general, due to the quadratic formulation of angular velocity in the 

rigid body dynamics, the derivation of this state in the 9-axis IMU faces the sign ambiguity  

problem [18]. This dilemma can be solved by comparing it to the estimated angular velocity which is 

integrated from the angular acceleration measurement [19] or by adding the redundant measurements 

to the IMU, for example, to increase the measurements to 12-axis [20]. Parsa et al. later developed an 

original all-accelerometer IMU which requires twelve 1-axis accelerometers mounted at specific 

locations on the surfaces of a cube. The system is capable of deriving all three states in which the 

angular velocity was derived through an optimization procedure from six measured inputs in the 

quadratic form [21]. Schopp et al. reported another novel 12-axis IMU which was constructed by 

twelve 1-axis accelerometers in different configurations and utilized an Unscented Kalman Filter 

(UKF) to yield all three states simultaneously [22].  

Previously we had installed a 12-axis IMU composed of four 3-axis accelerometers at four distinct 

locations on the robot RHex [23], together with some custom-made leg sensors [24], to perform sensor 

data fusion for full body state estimation in this hexapod robot with dynamical gait [25]. Based on the 

rigid-body dynamics and matrix theory, the developed 12-axis IMU is theoretically capable of deriving 

all three states. However, limited available space on the RHex for sensor installation at that time 

constrained the configuration of the IMU far from the optimum level. Only the linear and angular 

accelerations were available for further analysis and no angular velocity developments were performed.  

Here, we report on the state derivation and performance evaluation of the 12-axis IMU with optimal 

configuration in the sense of matrix operation, allowing the system to yield all three states. 

Particularly, a new algorithm which derives the angular velocity is reported. Basically, the state is 

estimated by the mixed signals from its quadratic form and derivative form based on the context-based 

interacting multiple models (IMM) [26]. The algorithm requires low computation power suitable  

for real-time derivation of the state. The proposed 12-axis IMU in its new configuration was tested 

under 3-dimensional random motion with various magnitudes, and its performance was evaluated by 

comparing to the results from the traditional IMU installed at the COM. 
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Section 2 briefly reviews the construction of the 12-axis IMU based on the analysis of rigid body 

dynamics. Section 3 describes the derivation of the angular velocity by the context-based IMM in 

detail. Section 4 reports the results of experimental evaluation, and Section 5 concludes the work. 

2. Construction of the 12-Axis IMU 

A brief review regarding construction of the 12-axis IMU is described in this section [25]. As 

shown in Figure 1, the acceleration vector, ap, of a point, p, rigidly attached to an accelerating body 

frame B with origin o, in the inertial frame, W, is a function of the body’s angular velocity, ω , angular 

acceleration, ω , and translational acceleration of the body origin, ao, represented by: 

)( opopop rωωrωaa    (1) 

where rop, the fixed position vector of point p relative to o, is assumed to be known. In general, the 

three body states (i.e., 9 scalar values) on the right hand side of Equation (1) are unknowns, including 

the COM translational acceleration, aCOM (usually equal to the origin of body frame, ao), the body 

angular acceleration, and the angular velocity: 
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With the quadratic representation of the angular velocity: 
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Equation (1) appears to be linear with these 12 scalar unknowns:  
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Presumably four 3-axis accelerometers are installed at point pj, j=1,2,3,4 with known ropj, j=1,2,3,4 : 
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and these accelerometers are oriented to measure accelerations in the directions along with three 

principal axes of the body coordinate, apj, j=1~4: 
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where S(rm) is the 12 × 12 matrix and hereafter referred to as the “structure matrix”. The S(rm) is the 

combination of four copies of Equation (1) with the dimensions 3 × 12. Due to the similarity of motion 

along with three principal axes, the structure of the 3 × 12 matrix is symmetric at a certain level. The  

first 3 × 3 matrix from the left side of S(rm) is just an identity matrix and the second 3 × 3 matrix from 

the left side is the skew-symmetric matrix because of the cross product operator. The 3 × 6 matrix from 

the right side of S(rm) is generated by the double cross product of the angular velocity term. 

Figure 1. General description of the accelerated body in the inertial frame. 
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The unknown body states can now be derived by the matrix operation: 

mm arSx
1

var )(   (7) 

Equation (7) reveals that the extraction of the desired state, xvar, now depends on the rank and 

numerical condition of the “structure matrix”, S(rm), which is solely a function of the positions of 

accelerometers, rm. Previously the numerical exploration pointed out that allocation of the four sensors 

shown in Figure 2(a) yields the best condition number of S(rm), square root of 2. It indicates that this 

configuration is the most appropriate for matrix inversion [25], and the computation error induced by 

the matrix inversion is small. Therefore the new experimental setup shown in Figure 2(b) was built 

according to this configuration for the following analysis. Please note that the construction and 

inversion of the structure matrix S(rm) only needs to be done once and can be computed offline after 

the positions and orientations of the accelerometers are determined. 

Figure 2. (a) The configuration of four 3-axis accelerometers that yields the best condition 

number for structure matrix S(rm). (b) The experimental apparatus. 
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3. Derivation of the Angular Velocity from the 12-Axis GF-IMU  

Section 2 shows that in the real-time process the unknown body state xvar in the proposed 12-axis 

GF-IMU can be derived from the 12 sensed scalar accelerations multiplied with the inversed structure 

matrix shown in Equation (7). In xvar, the linear and angular accelerations are readily derived though 

the angular velocity in its exact form is still unsolved and requires further computation. In the current 

formulation, two sensed sources are available for this computation. One is from the angular acceleration, 

the 4th–6th terms of xvar shown in Equation (4), which is the derivative of the desired state. The other 

is from the last six terms of xvar, which is the quadratic form of the desired one. Because in the 

empirical setup the developed algorithm is executed by the commercial computers, the representation 

is in the discrete domain in the following sections. 

3.1. The Primitive Derivation of the Angular Velocity  

To derive the angular velocity from the available angular acceleration, int, the trapezoid integration 

is the preferred method: 

zyxi
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where the subscripts j and j-1 represent consecutive two time stamps with time, t, in between. This 

method (hereafter referred to as the “integration method”) is simple and effective for a short duration, 

but is not suitable for a long period of time because the accumulated integration error quickly 

deteriorates the quality of the derived signal. Adding a bias term to Equation (8) may reduce the error; 

however, in general this compensation is not effective for motion not performed in specific patterns. 

The angular velocity derived from its quadratic form (hereafter referred to as the “quadratic 

method”) has non-drift nature; however, the trade-off is the sign ambiguity problem, meaning to select 

the correct answer from multiple potential choices resulted from “square-root” computations. More 

specifically, assuming the first three quadratic terms shown in Equation (3) are chosen:  

cba zyzxyx  222222           (9) 

a solution derived from this method, qua, can be represented as: 
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which indicates that there are eight possible combinations because each scalar angular velocity has two 

possible solutions. When one or more values of the quadratic sums, a, b, and c, are very close to zero, 

the estimated angular velocity should be around zero, so the sign ambiguity problem vanishes and the 

number of combinations declines. However, in general situations when eight candidates appear, the 

selection process is required. Intuitively, the derived and readily-available angular acceleration shown 

in Equation (7) can be involved in this process. Without loss of generality, assuming j-1 is
 
the 

correctly estimated angular velocity at time stamp j − 1, the intuitive method to derive correct j is to 

obtain the initial guess of j by integration method shown in Equation (8), int,j , and this guess is 
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utilized as the reference to select one correct answer out of the eight candidates shown in Equation (10). 

More specifically, the L2 norm can be utilized as the quantitative measure: 

|| qua − int ||2  (11) 

where the candidate with minimum value represents the correct choice. Figure 3(a) roughly sketches 

this computation process. 

Figure 3. Various scenarios of selecting the correct angular velocity from the eight 

candidates deriving from the quadratic method: (a) “perfect world” with no estimate error, 

the true angular velocity (red line) is precisely sampled (red circle). The initial guess 

derived from integration method is represented in green color. (b) Normal situation where 

all computed data have certain variances (shown in error bar). (c) Normal situation when 

the magnitude of the angular velocity is small and the correct solution is hard to pick. 

qua

(a)

jj-1j-2j-3

qua

qua

qua

qua

(b)

jj-1j-2j-3

act

int

qua

qua

qua

qua

(c)

jj-1j-2j-3

act

int

qua

qua

qua

act

int

Int, TIMU

 

 

Practically, the quadratic method described above is likely to select an incorrect answer while the 

magnitude of the actual angular velocity, act, is small. If the derived j-1 at time stamp j − 1 is precise, 

the most likely cause of estimation error of j at time stamp j “in the perfect world” is the process of 

trapezoid integration, which assumes the acceleration is constant during that time interval. As depicted in 

Figure 3(a), the actual motion pattern may vary in a very fast manner, and the angular acceleration 

derived from the 12-axis GF-IMU catches the instant value at the sampled time stamp because of the 

memoryless computation shown in Equation (7). The discrepancy between the instant and average 

accelerations during time stamp j results in the estimation error of the initial-guess, int,j. This 

phenomenon in the traditional IMU (TIMU) which derives the angular acceleration by the differentiation 

of the angular velocity signal is even worse since the differentiation process introduces the noise and 

delay as shown in Figure 3(a). In the empirical world the situation is even more severe due to signal 

noises and accumulated digitization round-off errors during computation. For example, the estimated j-1 

at the j − 1 time stamp may already have certain estimation error, and the calculated angular acceleration 

and quadratic angular velocity shown in Equation (7) also have certain errors due to digitized matrix 

inversion and noisy sensor signals as depicted in Figure 3(b). Both empirical effects strongly affect the 

accuracy of 1-out-of-8 selection process, especially when the magnitude of the actual angular velocity 
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act is small, as depicted in Figure 3(c) where multiple choices of qua may fall into the estimated ranges. 

In addition, because the estimation process is iterative, one incorrect estimate may badly affect the 

correctness of future estimates. Therefore it can be concluded that the quadratic method is suitable while 

the magnitude of quadratic sums, a, b, and c, are either very close to zero or large (i.e., not small). 

In summary, neither one of the two methods is individually capable of yielding a correct estimation 

of the angular velocity. Because of the complementary characteristics between them, it is intuitive to 

fuse signals from these two methods to yield a better angular velocity estimate, 12-axis.  

3.2. Context-Based Interacting Multiple Models  

A better estimation of the angular velocity can be achieved by the adequate combination of the 

signals derived from the integration and quadratic methods. The process can be categorized within the 

domain of Interacting Multiple Models (IMM) [27,28], which generally calculates the accuracy of all 

models in a stochastic manner and mixes the estimated signals from all sources in a weighted manner 

to produce the correct estimate. Because executing the covariance of all models requires certain 

computation power as well as the performance of the models for specific scenarios may not be fairly 

judged by simple Gaussian assumptions, the context-based IMM [26] is adopted in the developed 

algorithm, which introduces the pre-selected contexts as the basic judgment for signal mixture from 

multiple models. 

The development shown in the previous sub-section indicates that the quadratic method is effective 

while the magnitude of the angular velocity is either close to zero or very large. Therefore, two 

thresholds, T1 and T2, are selected as the contexts. T1 is the boundary where the estimated angular 

velocity should be treated as zero, and T2 is the boundary where the quadratic method is effective. 

These two contexts divide the range of quadratic sums, a, b, and c, into three sections as depicted in 

Figure 4. While 0 ≤ i
2 

+ j
2 ≤ T1 as shown in Figure 4(a), referred to as the zero model, one can set 

the angular velocity to zero. While i
2 
+ j

2 ≥ T2 as shown in Figure 4(c), referred to as the quadratic 

model, one can obtain the angular velocity by the quadratic method. While T1 ≤ i
2 

+ j
2 ≤ T2 as 

shown in Figure 4(b), referred to as the integration model, one adopts the integration method. 

Figure 4. Three different computation methods categorized by the magnitude of the 

quadratic terms: (a) 0 ≤ i
2 
+ j

2 ≤ T1; (b) T1 ≤ i
2 
+ j

2 ≤ T2; (c) i
2 
+ j

2 ≥ T2. 
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Each of the quadratic sums, a, b, or c, can reside in three possible sections shown in Figure 4, so 

there are twenty-seven possible combinations. Because the equations shown in Equation (9) are 

coupled, further categorization and treatment is detailed as follows. 
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Case 1. a, b, c ≥ T2 

 

When a, b, c ≥ T2 
as shown in Figure 5(a), act is far away from zero along all three principal 

directions. In this case the estimated 12-axis is determined by the quadratic method: 

qua,zaxis,zqua,yaxis,yqua,xaxis,x ωωωωωω   121212         (12)

 
 

Case 2. T1 ≤ a < T2 and b, c ≥ T2 

 

When T1 ≤ a < T2 and b, c ≥ T2 as shown in Figure 5(b), it is reasonable to conclude that act,z is 

far away from zero and act,x and act,y are likely to have moderate magnitudes. Therefore both 

methods are utilized in this case: 

qua,zaxis,z12int,yaxis,y12int,xaxis,x12 ωωωωωω           (13) 

Similarly, both T1 ≤ b < T2, a, c ≥ T2 and T1 ≤ c < T2, a, b ≥ T2 are within this case. 

 

Case 3. 0 ≤ a < T1 and b, c ≥ T2 

 

When 0 ≤ a < T1 and b, c ≥ T2 as shown in Figure 5(c), it can be concluded that act,z has a large 

magnitude but act,x and act,y are close to zero. Therefore only the former requires computation by the 

quadratic method: 

qua,zaxis,z12axis,y12axis,x12 ωωωω      0    0  (14) 

Similarly, both 0 ≤ b < T1, a, c ≥ T2 and 0 ≤ c < T1, a, b ≥ T2 are within this case. 

 

Case 4. 0 ≤ a, b, c < T1 

 

When 0 ≤ a, b, c < T1 as shown in Figure 5(d), it is reasonable to set all components to zero: 

0   0    0   axis,z12axis,y12axis,x12 ωωω  (15) 

Figure 5. Four different scenarios which utilize different algorithms. 
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Besides the four cases shown above, there are nineteen combinations left undetermined. Because 

there is no clear trend to judge the adequateness of the quadratic method in these combinations, the 

estimated angular velocity 12-axis is derived from the integration method (i.e., 12-axis = int). If the 

computed a, b, or c appears in an unreasonable less-than-zero value due to empirical computation error, 

the estimated angular velocity 12-axis is also derived from the integration method (i.e., 12-axis = int, 

the quadratic sums are not utilized in the computation in this time stamp). 

The proposed estimation shown in the previous paragraph has the “hard switching” nature. This 

implies an unreasonable situation because the trustworthiness of the models has a sharp boundary. 

Technically, suddenly switching the estimation from one method to another also introduces a signal 

discontinuity problem. Therefore the “soft switching” technique is adopted, which defines the 

probability of each model in a continuous manner as shown in Figure 6. When i
2 
+ j

2
 is close to

 
T1, 

12-axis is designed to be the linear combination of zero and int : 
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The h1 and h2 are the percentages of the overall range to be utilized for linear combination of models 

(i.e., soft switching). Smaller values of h1 and h2 represent sharper switching, and larger values 

represent smoother transition. The h1 and h2 are set around 2% in the empirical evaluation. 

Figure 6. Defined probabilities of the interacted three models. 

 

3.3. Brief Discussion 

The algorithm reported in the previous sub-section utilizes the first three terms shown in  

Equation (3) to recover the angular velocity. The last three terms can also be utilized to perform the 
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Because of the multiplication characteristics there are only two candidates instead of eight. This 

reveals that if one sign of i, i=x,y,z is selected, the other two will be determined. However, empirically 

the sign determination is tricky and no obvious model can be constructed. Thus this approach is not 

adopted in the development. Another method is to construct the complete squares by utilizing all six 

terms shown in Equation (3): 

fωωeωωdωωcba zyzxyxzyzxyx                     222222   (20) 

and angular velocity can be derived as: 

   

   

   

2

1 2 1 2

2

1 3 1 3

2

2 3 2 3

2

2

2

a d

b e

c f

   

   

   

      

      

      

 (21) 

Though the sensed signals shown in Equation (7) are utilized in a more thorough manner, the 

strategy of setting adequate contexts is also not clear in this case. For example, the advantage of the 

zero model does not exist in this case because the setting of x + y = 0 can only reveal that x and y 

are in opposite sign with no magnitude information. Thus this approach is not adopted in the  

development either. 

4. Experimental Evaluation 

The experimental apparatus shown in Figure 2(b) was utilized for experimental evaluation of the 

proposed 12-axis system. The required sensory measurements were obtained from four 3-axis 

accelerometers (ADXL330, ±3g, Analog Device) installed at the specific configuration shown in  

Figure 2(a). In addition, a traditional IMU composed by one 3-axis accelerometer (ADXL330) and  

three 1-axis rate gyros (ADXRS610, ±3000/s, Analog Device) was also mounted at the COM for 

performance comparison. A real-time embedded control system (sbRIO-9632, National Instruments) 

running at 500 Hz was in charge of sensor signal collection. All of the analog input channels of the 

sbRIO have ±10 V range and 16-bit A-to-D resolutions. Random motions with varied magnitudes were 

applied to the experimental apparatus during experiments and the following analysis was based on the 

measured data.  

4.1. Selection of Contexts T1 and T2  

The context T1 represents the boundary which sets the estimated angular velocity 12-Axis at zero. It 

is not reasonable to set a large T1 as it would force 12-Axis to be zero when it is not. On the other hand, 

a very small
 
T1 yields very little data that qualifies for this criterion. Empirically it is determined by the 

noise level of the sensors as well as the precision of the digitized computation. T1 is set around 0.1 in 

the experiments. 
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The context T2 determines the magnitude level where the angular velocity can be effectively 

determined by quadratic methods instead of the integration method. Therefore small T2 easily yields 

the wrong selection from the eight candidates. Large T2 forces the data to be computed by integration, 

and the data drift appears when the time duration of the angular velocity computed in this method is 

long. Therefore a study on how to correctly choose the right T2 is performed and detailed as follows. 

Figure 7 plots the typical Root-mean-squared Error (RMSE) vs. T2 based on one of the experimental 

data, where the RMSE is the comparison between the estimated angular velocity, 12-Axis, and that 

measured by the traditional IMU, TIMU. The RMSE shown in the plot is the summed result of its three 

scalar components. The plot indicates that the RMSE is relatively large when T2 is small, when the 

quadratic method is over trusted. It also indicates that RMSE is relatively large when T2 is large. In this 

setting most of the estimates were done by the integration method and the data drift was observed. The 

wide and flat bottom of the curve shown in Figure 7 is also observed in other data sets, which indicates 

that there exists a wide selectable range of T2 values which yields similar performance, as the best 

RMSE happened at T2 min. For example, if the acceptable RMSE is bounded by an extra 20% of the 

best RMSE, the selectable range of T2 is spanned from 3 to 9. 

 

Figure 7. The relationship between T2 and the RMSE between TIMU and 12-Axis. 
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Figure 8 plots the variation of T2 min (blue circle) vs. the average level of the motion, which is 

quantitatively defined as the summation of the quadratic sums, a + b + c. Instead of defining the level 

of motion directly in the angular velocity, quadratic sums are utilized since these sums are available 

right after the multiplication of the inversed matrix to the sensory inputs shown in Equation (7). 

Because the errors resulted from the matrix inversion and noises due to empirical sensor readings are 

usually scaled with the magnitude of the signals, the selected T2 should increase as the magnitude of 

motion increases. The blue linear trend line with positive slope also confirms this phenomenon. The 

plot also reveals that the tolerable 10% or 20% increase of RMSE intersects with the linear trend line. 

Because the lengths of 20% lines are large and the slope of the trend line is small, the computation 

error of a + b + c has very little effect on the quantitative measure of the trend line. Thus the adequate 

T2 can be easily obtained according to the equation of the trend line when the quadratic sums, a, b, and 

c, are given. This plot suggests that the selection of T2 can be achieved by the given quadratic sums 
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and the trend line, and the RMSE comparison test which requires the gyroscope input shown in  

Figure 7 is not necessary. The selected T2 is fixed for the followed real-time estimation. 

Figure 8. The relation between amplitude of motion and T2min. 

 

In order to quantitatively evaluate the usability of the trend line, instead of using T2 min as the 

context, Figure 9 plots the percentage error of the estimated angular velocity versus T2 trend, which is 

the selected T2 calculated from the trend line with given quadratic sums. Percentage error is calculated 

as the ratio of the RMSE to the maximum magnitude at that experiment trial, where the RMSE is the 

comparison between the estimated angular velocity, 12-Axis, and that measured by the traditional IMU, 

TIMU. Figure 9 indicates that the computed T2 from trend line performs adequately; the percentage 

errors are mostly around 12% or less. 

Figure 9. The relationship between T2 and the ratio of RMSE and amplitude of angular velocity. 
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4.2. Performance of the State Derivation from the 12-Axis GF-IMU 

In the experimental evaluation the apparatus was moved arbitrarily in the 3-dimensional space; thus 

the linear and angular accelerations along all three principal axes could be induced in the test. Before 

the sensor readings were imported into Equation (5), the raw accelerometer readings were filtered by 

Chebyshev filters and gravity-compensated by the readings of the 2-axis inclinometer. Table 1 lists the 

statistical summary of the experiments where the RMSEs were the comparisons between the estimated 

state of 12-Axis and the measured state from the traditional IMU installed at the COM, TIMU. The 

angular acceleration of the traditional IMU is obtained by differentiation of the angular velocity, 

followed by filtered with a Chebyshev filter. Figure 10 plots one typical result of the experiment. 
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Figure 10(a) confirms that though the sensors of the proposed 12-axis GF-IMU (thin red solid lines) 

are not located at the COM, they can indeed recover the COM linear acceleration. Figure 10(b) shows 

that the angular acceleration can also be correctly derived by the 12-axis GF-IMU. Figure 10(c) reveals 

that though several unmatched sections exist between the 12-axis GF-IMU and the traditional IMU 

readings, the proposed algorithm in general can indeed recover the angular velocity along with all 

three principal directions. The discrepancy either resulted from (i) the accumulated integration error 

where the magnitude of the quadratic sums fell into the integration model for too long or (ii) the 

incorrect selection of the angular velocity in the quadratic model. 

 

Table 1. The RMSE Between the traditional IMU and the 12-axis IMU while the apparatus 

moved arbitrarily in the 3-dimensional space. 

Linear acceleration  

(m/s
2
) 

Angular acceleration  

(rad/s
2
) 

Angular velocity  

(rad/s) 

ax ay az x  y  
z  x y z 

0.1359  0.0933  0.1296 0.4985  0.7691  1.4188 0.3953  0.2301  0.2593 

Figure 10. Comparison of states obtained from the traditional IMU (thick black dashed 

line) and the 12-axis IMU (thin red solid line): (a) linear acceleration, (b) angular 

acceleration, and (c) angular velocity. 
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Figure 10. Cont. 
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Figure 11 compares the performance of three different methods: integration method, quadratic 

method, and the proposed method. Figure 10(c) reveals that the angular velocity derived from the 

proposed method matches closely to the readings from the traditional IMU, so in Figure 11 the 

performance of the latter one is skipped for clear presentation. Figure 11 shows that the angular 

velocity derived from the integration method drifts over time as expected. In contrast, the angular 

velocity derived from the quadratic method is bounded. However, the 1-out-of-8 selection process of 

the quadratic method is likely to select an incorrect answer while the magnitude of the signal is small. 

In addition, because the estimation process is iterative, one incorrect estimate may badly affect the 

correctness of future estimates until at certain moment the correct selection moves the estimates back 

to the right track. Figure 11 indicates that the proposed method with right mixture between the 

integration and the quadratic methods yields the adequate estimation.  

 

Figure 11. Comparison of the angular velocity derived from three different methods: 

integration method (blue dash-dotted line)), quadratic method (green dashed line), and 

proposed method (red solid line). 

 

 

Figure 12 shows the timings where the switching between two methods takes place. The 15-sec data 

had 7,500 sampled data points, and the proposed method switched around 100 times. 
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Figure 12. The timing of switching (grey lines) between the integration method and the 

quadratic methods. 

 

5. Conclusions 

We have investigated a 12-axis inertial measurement unit that utilizes four 3-axis linear acceleration 

measurements from accelerometers installed at four distinct locations. We have developed a new 

algorithm which derives the angular velocity by mixing the signals from its quadratic form and its 

derivative form via the context-based interacting multiple models. The performance of the system was 

evaluated while the system was under arbitrary 3-dimensional motion. By adequately-choosing two 

contexts, the angular velocity can indeed be recovered. In the meantime, the linear and angular 

accelerations are correctly estimated as well, which confirmed that the COM acceleration state can be 

derived even though the sensors are not installed at that specific spot. 

We are in the process of investigating a sensor fusion scheme of the reported system with other 

position and orientation sensors with the intention of constructing an observable system capable of 

accurate full body state estimation for analysis of dynamic locomotion in legged robots. 
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